Fiche de travaux dirigés sur le calcul intégral

Exercice 0

Soit $I_n = \int_0^1 x^n \ln(1+x) dx$, $n \in \mathbb{N}$.

- 1. Calculer I_0 .
- 2. a. Montrer que $I_n \ge 0$ pour tout $n \in \mathbb{N}$.
- b. Etablir que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- c. En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente.
- 3. a. Justifier l'inégalité : $x^n \ln(1+x) \le x^n$ pour tout x de [0, 1].
- b. En déduire que pour tout $n \in \mathbb{N}$: $I_n \le \frac{1}{n+1}$.
- c. Calculer $\lim_{n\to+\infty} I_n$.
- 4. a. En utilisant une intégration par parties, montrer que In = $I_n = \frac{\ln(2)}{n+1} \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{1+x} dx$.
- b. Montrer que $0 \le 0 \le \int_0^1 \frac{x^{n+1}}{1+x} dx \le \frac{1}{n+2}$ et en déduire un encadrement de I_n .
- c. En déduire : $\lim_{n\to+\infty} nI_n$.

Exercice 1

Pour tout entier naturel *n* on pose : $I_n = \int_0^1 x^n e^{-x} dx$.

- 1. a. Montrer que, pour tout entier naturel $n: 0 \le I_n \le \frac{1}{n+1}$.
- b. En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 2. A l'aide d'une intégration par parties, établir, pour tout entier naturel $n: I_n = \frac{1}{\ell(n+1)} + \frac{I_{n+1}}{n+1}$
- 3. a. En déduire pour tout entier naturel $n: 0 \le I_n \frac{1}{e(n+1)} \le \frac{1}{(n+1)(n+2)}$.

Exercice 2

Soit
$$I_n = \int_{-1}^{1} (x^2 - 1)^n dx$$
.

- 1. Démontrer que pour tout entier n supérieur ou égal à 1 : $(2n+1)I_n = -2nI_{n-1}$.
- 2. En déduire l'expression de I_n en fonction de n.

Exercice 3

1. Vérifier que $\forall x \in [0; +\infty[0 \le \ln(1+x) \le x]$.

En déduire la limite quand l'entier n tend vers $+\infty$ de $\int_0^1 \ln(1+x^n)dx$.

2. Soit *u* la suite réelle définie par $u_n = \int_0^1 \frac{x^n}{1+x^n} dx$.

Montrer que pour tout entier naturel n non nul $u_n = \frac{\ln 2}{n} - \frac{1}{n} \int_0^1 \ln(1+x^n) dx$; on pourra utiliser une intégration par parties. En déduire la limite de u_n et celle de nu_n quand n tend vers $+\infty$.

Exercice 4

Soit I la suite de terme général $I_n = \int_0^1 x^n e^{-x} dx$.

- 1. a. Calculer I_0 et I_1 .
- b. Montrer que pour tout entier naturel n, $I_n \le \frac{1}{n+1}$. Etudier la convergence de la suite I.
- 2. Calcul d'une valeur approchée de I_{15} .
- a. Montrer que $\forall n \in \mathbb{N}$, $I_{n+1} = (n+1)I_n \frac{1}{e}$, et $I_n = \frac{n!}{e} \sum_{k=1}^p \frac{1}{(n+k)!} + \frac{n!}{(n+p)!} I_{n+p}$.
- b. En déduire que pour tout n dans \mathbb{N} $0 \le I_n \frac{n!}{e} \sum_{k=1}^p \frac{1}{(n+k)!} \le \frac{n!}{(n+p+1)!} \le \frac{1}{(n+1)^{p+1}}$.

Exercice 5

Pour tout *n* dans \mathbb{N} , on pose $I_n = \int_0^1 \frac{x^n}{\sqrt{1+x^2}} dx$ et $J_n = \int_0^1 \frac{x^{n+2}}{(1+x^2)\sqrt{1+x^2}} dx$.

- 1. Quelle est la dérivée de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$? Calculer I_0 .
- 2. Calculer I_1 .
- 3. Montrer que pour tout n dans \mathbb{N} , $0 \le I_n \le \frac{1}{n+1}$. En déduire la limite de I_n quand n tend vers $+\infty$. Montrer que J_n tend vers 0 quand n tend vers $+\infty$.
- 4. Etablir à l'aide d'une intégration par parties que $I_n = \frac{1}{(n+1)\sqrt{2}} + \frac{1}{n+1} J_n$.

Quelle est la limite de nI_n quand n tend vers $+\infty$?

Exercice 6

Pour tout entier *n* supérieur ou égal à 1 on pose $I_n = \int_0^1 x^n \ln(1+x^2) dx$ et $J_n = \int_0^1 \frac{x^n}{1+x^2} dx$.

- 1. Etude de la suite $(J_n)_{n\geq 1}$.
- a. Calculer J_1 .
- b. Montrer que pour tout *n* supérieur ou égal à 1, $0 \le J_n \le \frac{1}{n+1}$.
- c. Etudier la convergence de la suite $(J_n)_{n\geq 1}$.
- 2. Etude de la suite $(I_n)_{n\geq 1}$.
- a. A l'aide d'une intégration par parties, montrer que pour tout n supérieur ou égal à 1,

$$I_n = \frac{\ln(2)}{n+1} - \frac{2}{n+1} J_{n+2}$$
.

- b. Etudier la convergence de la suite $(I_n)_{n\geq 1}$.
- c. Déterminer un équivalent de I_n quand n tend vers $+\infty$.

Calculez les intégrales suivantes (la rédaction doit être détaillée) :

a)
$$\int_{-3}^{0} (x^3 + 2x^2 - 1) dx$$
; b) $\int_{1}^{2} \frac{x - 1}{x^2 - 2x + 2} dx$; c) $\int_{1}^{e} \frac{\ln t}{t} dt$; d) $\int_{1}^{2} 2e^{3x} dx$; e) $\int_{0}^{3} \frac{5}{\sqrt{2x + 3}} dx$; f) $\int_{1}^{2} (x + 1) \ln x dx$; g) $\int_{1}^{e} \frac{\ln x}{x^2} dx$;

h)
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^{2} x + 1} dx ; i) \int_{-2}^{0} (2x^{3} - x + 1) dx ; j) \int_{1}^{2} \frac{2}{(3u - 1)^{2}} du ; k) \int_{\frac{1}{2}}^{e} \frac{\ln x}{x} dx ; l) \int_{0}^{2} 3e^{2x} dx ;$$

m)
$$\int_{0}^{4} \frac{1}{\sqrt{2x+1}} dx$$
; n) $\int_{1}^{2} x^{2} \ln x dx$; o) $\int_{1}^{e} \frac{\ln 2t}{t^{2}} dt$; p) $\int_{-\frac{\pi}{c}}^{\frac{\pi}{4}} \cos x e^{\sin x} dx$;

q)
$$\int_{-1}^{1} t \sqrt{1-t^2} dt$$
; r) $\int_{1}^{2} \frac{1}{x^2} + \frac{1}{(1+2x)^2} dx$; s) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 + \tan^2\left(\frac{u}{2}\right) du$.

t)
$$\int_0^1 xe^{2x} dx$$
 u) $\int_0^{\frac{\pi}{3}} \sin x \cos^3 x dx$, v) $\int_1^2 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$.

Exercice 8

- 1. Calculer $I = \int_{0}^{\frac{\pi}{4}} x \tan^2 x \, dx$ à l'aide d'une intégration par parties.
- 2. Soit la fonction définie sur $\left[0; \frac{\pi}{2}\right]$ par : $f(x) = \sqrt{x} \tan x$ dont la courbe (C_f) est représentée ci-contre dans le plan P muni du repère orthonormal $(O; \vec{i}, \vec{j})$.

On considère le solide engendré par la rotation autour de l'axe $(O; \vec{i})$ de la surface délimitée dans le plan P par l'axe $(O; \vec{i})$, la droite d'équation $x = \frac{\pi}{4}$ et la courbe (C_f) .

Sachant que l'unité graphique est de 2 cm, calculer le volume V du solide en cm³.

Exercice 9

On considère la fonction numérique f définie par $f(x) = \frac{1}{1+x}$.

- 1. Déterminer une fonction polynôme P, de degré inférieur ou égal à 3 qui a même valeur et même nombre dérivé que f en 0 et 1.
- 2. Soit k la fonction définie par $k(x) = \frac{1}{1+x} + \frac{1}{4}x^3 \frac{3}{4}x^2 + x 1$. Factoriser k et en déduire la position relative de C_f et C_P , les courbes représentatives de f et P.
- 3. A l'aide d'un encadrement de 1+x pour x dans [0; 1] montrer que $\frac{1}{240} < \int_0^1 k(x) dx < \frac{1}{120}$.
- 4. Calculer $\int_0^1 f(x)dx$ et $\int_0^1 P(x)dx$.
- 5. Déduire des résultats précédents la valeur de l'entier n tel que $\frac{n}{240} < \ln 2 < \frac{n+1}{240}$
- 6. On considère la suite géométrique u_n de premier terme 1 et de raison -x.
- a. Calculer la somme des *n* premiers termes : $s_n(x) = 1 x + x^2 \dots + (-x)^n$; en déduire $f(x) = s_n(x) + \frac{(-x)^{n+1}}{1+x}$.

b. Montrer que
$$\int_0^a f(x)dx = a - \frac{1}{2}a^2 + \frac{1}{3}a^3 + ... + \frac{1}{n+1}(-x)^{n+1} + \int_0^a \frac{(-x)^{n+1}}{1+x}dx$$
.

c. Montrer que sur
$$[0; a]$$
 on a $-\frac{a^{n+1}}{1+a} \le \frac{(-x)^{n+1}}{1+a}$ puis que $-\frac{a^{n+2}}{1+a} \le \int_0^a \frac{(-x)^{n+1}}{1+x} dx \le \frac{a^{n+2}}{1+a}$. Préciser la limite de $\int_0^a \frac{(-x)^{n+1}}{1+x} dx$ lorsque n tend vers $+\infty$.

Pour tout entier naturel n, on définit $I_n = \int_{0}^{\frac{\pi}{2}} e^{-nx} \sin x dx$ et $J_n = \int_{0}^{\frac{\pi}{2}} e^{-nx} \cos x dx$.

- 1. Calculer I_0 et J_0
- 1. Calcule I_0 coso

 2. En intégrant par parties I_n puis J_n montrer que $\begin{cases} I_n + nJ_n = 1 \\ -nI_n + J_n = e^{-n\frac{\pi}{2}} \end{cases}$.
- 3. En déduire les expressions de I_n et J_n en fonction de I_n
- 4. Déterminer la limite de I_n et celle de J_n quand n tend vers $+\infty$.

Exercice 11

$$\mathbf{K} = \int_{0}^{\frac{\pi}{8}} e^{-2t} \cos 2t \ dt, \quad \mathbf{I} = \int_{0}^{\frac{\pi}{8}} e^{-2t} \cos^2 t \ dt, \quad \mathbf{J} = \int_{0}^{\frac{\pi}{8}} e^{-2t} \sin^2 t \ dt.$$

27. On pose
$$I_1 = \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + 2\sin x} dx$$
, $I = \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{1 + 2\sin x} dx$ et $I_2 = I_1 + I$.

Calculer I2 puis I1. En déduire I.

Exercice 12

Soit (u_n) la suite définie sur \mathbb{N}^* par $u_n = \sum_{k=2n}^{k=2n} \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + ... + \frac{1}{2n}$.

PARTIE A

- 1. Montrer que pour tout *n* de \mathbb{N}^* , $u_{n+1} u_n = \frac{-3n 2}{n(2n+2)(2n+1)}$.
- 2. En déduire le sens de variation de la suite (u_n) .
- 3. Établir alors que (u_n) est une suite convergente.

L'objectif de la partie B est de déterminer la valeur de la limite de la suite (u_n) .

PARTIE B

Soit f la fonction définie sur l'intervalle]0; $+\infty$ [par : $f(x) = \frac{1}{x} + \ln\left(\frac{x}{x+1}\right)$.

- 1. a. Justifier pour tout entier naturel n non nul l'encadrement : $\frac{1}{n+1} \le \int_{-\infty}^{n+1} \frac{1}{x} dx \le \frac{1}{n}$.
- b. Vérifier que $\int_{-\infty}^{n+1} \frac{1}{x} dx = \frac{1}{n} f(n).$

- c. En déduire que pour tout entier naturel n non nul, $0 \le f(n) \le \frac{1}{n(n+1)}$.
- 2. On considère la suite (S_n) définie sur \mathbb{N}^* par

$$S_n = \sum_{k=n}^{k=2n} \frac{1}{k(k+1)} = \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{2n(2n+1)}.$$

- a. Montrer que pour tout entier naturel n non nul, $0 \le f(n) + f(n+1) + ... + f(2n) \le S_n$.
- b. Déterminer les réels a et b tels que pour tout réel x distinct de -1 et de 0, on ait

$$\frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}.$$

- c. En déduire l'égalité $S_n = \frac{n+1}{n(2n+1)}$.
- d. En utilisant les questions précédentes, déterminer alors la limite quand n tend vers $+\infty$ de

$$\sum_{k=n}^{k=2n} f(k) = f(n) + f(n+1) + \dots + f(2n).$$

- e. Vérifier que pour tout entier n > 1, $f(n) + f(n+1) + ... + f(2n) = u_n \ln\left(2 + \frac{1}{n}\right)$.
- f. Déterminer la limite de la suite (u_n) .

Considèrons la famille de fonctions définies à l'aide du paramètre réel λ par :

$$f_{\lambda}(x) = \left(\lambda(x-1) + \frac{1}{x+1}\right) e^{x}$$

- a) Montrer que toutes les coubes & passent par un même point fixe A que l'on déterminera.
- b) Etudier le comportement de f_{λ} au voisinage de $+\infty$, $-\infty$ et du point 1. On précisera les asymptotes éventuelles.
- c) Etudier le sens de variation de f_{λ} . Montrer que pour $\lambda < 0$ et $\lambda \neq -1$, f_{λ} admet deux extrêmums d'abscisses non nulles : $x_1(\lambda) < x_2(\lambda)$.
- d) Déterminer l'ensemble Γ des points P_{λ} des courbes \mathcal{E}_{λ} correspondant à ces extrêmums.
- c) Tracer sur une même figure les courbes & pour

$$\lambda = -2; -1; -\frac{1}{2}; 0; 1; 2.$$

Exercice 14

Calculer les intégrales suivantes

$$\int_0^1 \frac{e^x - 1}{e^x + 1} dx.$$
 (Deux méthodes)

$$\int_{0}^{1} \frac{t \, dt}{1 + t^{4}} \cdot \int_{1}^{2} \frac{dt}{t(1 + t)}, \text{ puis } \int_{1}^{2} \frac{\text{Log } (1 + t)}{t^{2}} \, dt.$$

On pose, pour tous entiers naturels, non nuls, a et n

$$I(a, n) = \int_0^1 x^a (1-x)^n dx$$
 et $I(a, 0) = \int_0^1 x^a dx$.

1º Montrer, en intégrant par parties, que

$$I(a + 1, n) = \frac{a+1}{n+1}$$
. $I(a, n + 1)$.

2° Établir que I(a, n) - I(a, n + 1) = I(a + 1, n).

En déduire que $I(a, n + 1) = \frac{n+1}{n+a+2}$. I(a, n). 3° On fixe l'entier a de \mathbb{N}^* . Calculer I(a, 0) et démontrer par récurrence sur n, que pour tout n de \mathbb{N}^* ,

$$I(a, n) = \frac{1 \times 2 \times 3 \times ... \times (n-1) \times n}{(a+1)(a+2) ... (a+n+1)}$$

EXERCICE 16

Pour tout entier naturel *n*, on pose $I_n = \int_{-\infty}^{1} x^n \sqrt{1-x} dx$.

1° Calculer Io et I1.

2° Montrer que $\forall n \in \mathbb{N}^*$, (3+2n) $\mathbf{I}_n = 2n$ \mathbf{I}_{n-1} .

Soit la suite $(\mathbf{I}_n)_{n\in\mathbb{N}}$ définie par $\mathbf{I}_n=\int_0^{\frac{\pi}{2}}\cos^n t \ \mathrm{d}t$.

1° Calculer Io, I1 et I2.

2° Montrer que, pour tout n entier naturel, on a

$$(n \ge 2) \Rightarrow (nI_n = (n-1)I_{n-2}).$$

En déduire la valeur de I_{2p} et I_{2p+1} pour p entier positif.

3° Vérifier que
$$\left(t \in \left[0, \frac{\pi}{2}\right]\right) \Rightarrow (\cos^n t \leqslant \cos^{n-1} t) \qquad (n \in \mathbb{N}^*).$$

4° Montrer que la suite u définie par, $\forall p \in \mathbb{N}^*$, $u_p = \frac{I_{2p-2}}{I_{2p}}$ converge vers 1 et

$$\pi = \lim_{n \to +\infty} \frac{1}{n} \left[\frac{2 \cdot 4 \cdot 6 \dots (2n-2) \cdot 2n}{1 \cdot 3 \cdot 5 \dots (2n-3) \cdot (2n-1)} \right]^{2}$$
 (formule de Wallis).

Exercice 8

4. 1° Montrer que, pour tout réel x, différent de — 1 et pour tout entier naturel

$$1-x+x^2-x^3+...+(-1)^{n-1}x^{n-1}=\frac{1}{1+x}-\frac{(-x)^n}{1+x}$$

En déduire l'égalité

$$\int_0^1 \frac{(-x)^n}{1+x} dx = \text{Log } 2 - \left[1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n-1}}{n}\right].$$

2° Montrer que

$$\forall x \in [0, 1], \quad \forall n \in \mathbb{N}^*, \quad -(x^n) \leqslant \frac{(-x)^n}{1+x} \leqslant x^n.$$

En déduire les inégalités

$$-\frac{1}{n+1} \leqslant \int_{0}^{1} \frac{(-x)^{n}}{1+x} dx \leqslant \frac{1}{n+1}$$

et la limite, quand n tend vers $+\infty$, de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$u_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n-1}}{n}$$

Hugues SILA Professeur honoraire de Mathématiques Ingénieur Statisticien Économiste